Termination w.r.t. Q of the following Term Rewriting System could not be shown:
Q restricted rewrite system:
The TRS R consists of the following rules:
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(01(x), j1(y)) -> j1(+2(x, y))
+2(j1(x), 01(y)) -> j1(+2(x, y))
+2(11(x), 11(y)) -> j1(+2(+2(x, y), 11(#)))
+2(j1(x), j1(y)) -> 11(+2(+2(x, y), j1(#)))
+2(11(x), j1(y)) -> 01(+2(x, y))
+2(j1(x), 11(y)) -> 01(+2(x, y))
+2(+2(x, y), z) -> +2(x, +2(y, z))
opp1(#) -> #
opp1(01(x)) -> 01(opp1(x))
opp1(11(x)) -> j1(opp1(x))
opp1(j1(x)) -> 11(opp1(x))
-2(x, y) -> +2(x, opp1(y))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(j1(x), y) -> -2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
Q is empty.
↳ QTRS
↳ DependencyPairsProof
Q restricted rewrite system:
The TRS R consists of the following rules:
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(01(x), j1(y)) -> j1(+2(x, y))
+2(j1(x), 01(y)) -> j1(+2(x, y))
+2(11(x), 11(y)) -> j1(+2(+2(x, y), 11(#)))
+2(j1(x), j1(y)) -> 11(+2(+2(x, y), j1(#)))
+2(11(x), j1(y)) -> 01(+2(x, y))
+2(j1(x), 11(y)) -> 01(+2(x, y))
+2(+2(x, y), z) -> +2(x, +2(y, z))
opp1(#) -> #
opp1(01(x)) -> 01(opp1(x))
opp1(11(x)) -> j1(opp1(x))
opp1(j1(x)) -> 11(opp1(x))
-2(x, y) -> +2(x, opp1(y))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(j1(x), y) -> -2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
Q is empty.
Q DP problem:
The TRS P consists of the following rules:
+12(j1(x), j1(y)) -> +12(x, y)
*12(*2(x, y), z) -> *12(y, z)
OPP1(j1(x)) -> OPP1(x)
+12(11(x), j1(y)) -> +12(x, y)
+12(j1(x), 11(y)) -> +12(x, y)
*12(*2(x, y), z) -> *12(x, *2(y, z))
-12(x, y) -> +12(x, opp1(y))
+12(j1(x), 11(y)) -> 011(+2(x, y))
+12(11(x), j1(y)) -> 011(+2(x, y))
+12(01(x), 01(y)) -> +12(x, y)
-12(x, y) -> OPP1(y)
*12(j1(x), y) -> *12(x, y)
OPP1(01(x)) -> OPP1(x)
+12(+2(x, y), z) -> +12(y, z)
*12(11(x), y) -> 011(*2(x, y))
*12(11(x), y) -> *12(x, y)
+12(j1(x), j1(y)) -> +12(+2(x, y), j1(#))
+12(01(x), 01(y)) -> 011(+2(x, y))
*12(j1(x), y) -> 011(*2(x, y))
*12(11(x), y) -> +12(01(*2(x, y)), y)
*12(j1(x), y) -> -12(01(*2(x, y)), y)
+12(11(x), 11(y)) -> +12(x, y)
OPP1(01(x)) -> 011(opp1(x))
+12(j1(x), 01(y)) -> +12(x, y)
+12(01(x), j1(y)) -> +12(x, y)
+12(+2(x, y), z) -> +12(x, +2(y, z))
OPP1(11(x)) -> OPP1(x)
*12(01(x), y) -> 011(*2(x, y))
*12(01(x), y) -> *12(x, y)
+12(11(x), 01(y)) -> +12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))
The TRS R consists of the following rules:
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(01(x), j1(y)) -> j1(+2(x, y))
+2(j1(x), 01(y)) -> j1(+2(x, y))
+2(11(x), 11(y)) -> j1(+2(+2(x, y), 11(#)))
+2(j1(x), j1(y)) -> 11(+2(+2(x, y), j1(#)))
+2(11(x), j1(y)) -> 01(+2(x, y))
+2(j1(x), 11(y)) -> 01(+2(x, y))
+2(+2(x, y), z) -> +2(x, +2(y, z))
opp1(#) -> #
opp1(01(x)) -> 01(opp1(x))
opp1(11(x)) -> j1(opp1(x))
opp1(j1(x)) -> 11(opp1(x))
-2(x, y) -> +2(x, opp1(y))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(j1(x), y) -> -2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
Q DP problem:
The TRS P consists of the following rules:
+12(j1(x), j1(y)) -> +12(x, y)
*12(*2(x, y), z) -> *12(y, z)
OPP1(j1(x)) -> OPP1(x)
+12(11(x), j1(y)) -> +12(x, y)
+12(j1(x), 11(y)) -> +12(x, y)
*12(*2(x, y), z) -> *12(x, *2(y, z))
-12(x, y) -> +12(x, opp1(y))
+12(j1(x), 11(y)) -> 011(+2(x, y))
+12(11(x), j1(y)) -> 011(+2(x, y))
+12(01(x), 01(y)) -> +12(x, y)
-12(x, y) -> OPP1(y)
*12(j1(x), y) -> *12(x, y)
OPP1(01(x)) -> OPP1(x)
+12(+2(x, y), z) -> +12(y, z)
*12(11(x), y) -> 011(*2(x, y))
*12(11(x), y) -> *12(x, y)
+12(j1(x), j1(y)) -> +12(+2(x, y), j1(#))
+12(01(x), 01(y)) -> 011(+2(x, y))
*12(j1(x), y) -> 011(*2(x, y))
*12(11(x), y) -> +12(01(*2(x, y)), y)
*12(j1(x), y) -> -12(01(*2(x, y)), y)
+12(11(x), 11(y)) -> +12(x, y)
OPP1(01(x)) -> 011(opp1(x))
+12(j1(x), 01(y)) -> +12(x, y)
+12(01(x), j1(y)) -> +12(x, y)
+12(+2(x, y), z) -> +12(x, +2(y, z))
OPP1(11(x)) -> OPP1(x)
*12(01(x), y) -> 011(*2(x, y))
*12(01(x), y) -> *12(x, y)
+12(11(x), 01(y)) -> +12(x, y)
+12(01(x), 11(y)) -> +12(x, y)
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))
The TRS R consists of the following rules:
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(01(x), j1(y)) -> j1(+2(x, y))
+2(j1(x), 01(y)) -> j1(+2(x, y))
+2(11(x), 11(y)) -> j1(+2(+2(x, y), 11(#)))
+2(j1(x), j1(y)) -> 11(+2(+2(x, y), j1(#)))
+2(11(x), j1(y)) -> 01(+2(x, y))
+2(j1(x), 11(y)) -> 01(+2(x, y))
+2(+2(x, y), z) -> +2(x, +2(y, z))
opp1(#) -> #
opp1(01(x)) -> 01(opp1(x))
opp1(11(x)) -> j1(opp1(x))
opp1(j1(x)) -> 11(opp1(x))
-2(x, y) -> +2(x, opp1(y))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(j1(x), y) -> -2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph contains 3 SCCs with 11 less nodes.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
OPP1(01(x)) -> OPP1(x)
OPP1(11(x)) -> OPP1(x)
OPP1(j1(x)) -> OPP1(x)
The TRS R consists of the following rules:
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(01(x), j1(y)) -> j1(+2(x, y))
+2(j1(x), 01(y)) -> j1(+2(x, y))
+2(11(x), 11(y)) -> j1(+2(+2(x, y), 11(#)))
+2(j1(x), j1(y)) -> 11(+2(+2(x, y), j1(#)))
+2(11(x), j1(y)) -> 01(+2(x, y))
+2(j1(x), 11(y)) -> 01(+2(x, y))
+2(+2(x, y), z) -> +2(x, +2(y, z))
opp1(#) -> #
opp1(01(x)) -> 01(opp1(x))
opp1(11(x)) -> j1(opp1(x))
opp1(j1(x)) -> 11(opp1(x))
-2(x, y) -> +2(x, opp1(y))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(j1(x), y) -> -2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
OPP1(j1(x)) -> OPP1(x)
Used argument filtering: OPP1(x1) = x1
01(x1) = x1
11(x1) = x1
j1(x1) = j1(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
OPP1(11(x)) -> OPP1(x)
OPP1(01(x)) -> OPP1(x)
The TRS R consists of the following rules:
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(01(x), j1(y)) -> j1(+2(x, y))
+2(j1(x), 01(y)) -> j1(+2(x, y))
+2(11(x), 11(y)) -> j1(+2(+2(x, y), 11(#)))
+2(j1(x), j1(y)) -> 11(+2(+2(x, y), j1(#)))
+2(11(x), j1(y)) -> 01(+2(x, y))
+2(j1(x), 11(y)) -> 01(+2(x, y))
+2(+2(x, y), z) -> +2(x, +2(y, z))
opp1(#) -> #
opp1(01(x)) -> 01(opp1(x))
opp1(11(x)) -> j1(opp1(x))
opp1(j1(x)) -> 11(opp1(x))
-2(x, y) -> +2(x, opp1(y))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(j1(x), y) -> -2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
OPP1(01(x)) -> OPP1(x)
Used argument filtering: OPP1(x1) = x1
11(x1) = x1
01(x1) = 01(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
OPP1(11(x)) -> OPP1(x)
The TRS R consists of the following rules:
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(01(x), j1(y)) -> j1(+2(x, y))
+2(j1(x), 01(y)) -> j1(+2(x, y))
+2(11(x), 11(y)) -> j1(+2(+2(x, y), 11(#)))
+2(j1(x), j1(y)) -> 11(+2(+2(x, y), j1(#)))
+2(11(x), j1(y)) -> 01(+2(x, y))
+2(j1(x), 11(y)) -> 01(+2(x, y))
+2(+2(x, y), z) -> +2(x, +2(y, z))
opp1(#) -> #
opp1(01(x)) -> 01(opp1(x))
opp1(11(x)) -> j1(opp1(x))
opp1(j1(x)) -> 11(opp1(x))
-2(x, y) -> +2(x, opp1(y))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(j1(x), y) -> -2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using an argument filtering and a montonic ordering, at least one Dependency Pair of this SCC can be strictly oriented.
OPP1(11(x)) -> OPP1(x)
Used argument filtering: OPP1(x1) = x1
11(x1) = 11(x1)
Used ordering: Quasi Precedence:
trivial
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ QDPAfsSolverProof
↳ QDP
↳ PisEmptyProof
↳ QDP
↳ QDP
Q DP problem:
P is empty.
The TRS R consists of the following rules:
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(01(x), j1(y)) -> j1(+2(x, y))
+2(j1(x), 01(y)) -> j1(+2(x, y))
+2(11(x), 11(y)) -> j1(+2(+2(x, y), 11(#)))
+2(j1(x), j1(y)) -> 11(+2(+2(x, y), j1(#)))
+2(11(x), j1(y)) -> 01(+2(x, y))
+2(j1(x), 11(y)) -> 01(+2(x, y))
+2(+2(x, y), z) -> +2(x, +2(y, z))
opp1(#) -> #
opp1(01(x)) -> 01(opp1(x))
opp1(11(x)) -> j1(opp1(x))
opp1(j1(x)) -> 11(opp1(x))
-2(x, y) -> +2(x, opp1(y))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(j1(x), y) -> -2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
+12(j1(x), j1(y)) -> +12(x, y)
+12(11(x), 11(y)) -> +12(x, y)
+12(11(x), j1(y)) -> +12(x, y)
+12(j1(x), 11(y)) -> +12(x, y)
+12(01(x), j1(y)) -> +12(x, y)
+12(j1(x), 01(y)) -> +12(x, y)
+12(+2(x, y), z) -> +12(x, +2(y, z))
+12(01(x), 01(y)) -> +12(x, y)
+12(+2(x, y), z) -> +12(y, z)
+12(j1(x), j1(y)) -> +12(+2(x, y), j1(#))
+12(01(x), 11(y)) -> +12(x, y)
+12(11(x), 01(y)) -> +12(x, y)
+12(11(x), 11(y)) -> +12(+2(x, y), 11(#))
The TRS R consists of the following rules:
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(01(x), j1(y)) -> j1(+2(x, y))
+2(j1(x), 01(y)) -> j1(+2(x, y))
+2(11(x), 11(y)) -> j1(+2(+2(x, y), 11(#)))
+2(j1(x), j1(y)) -> 11(+2(+2(x, y), j1(#)))
+2(11(x), j1(y)) -> 01(+2(x, y))
+2(j1(x), 11(y)) -> 01(+2(x, y))
+2(+2(x, y), z) -> +2(x, +2(y, z))
opp1(#) -> #
opp1(01(x)) -> 01(opp1(x))
opp1(11(x)) -> j1(opp1(x))
opp1(j1(x)) -> 11(opp1(x))
-2(x, y) -> +2(x, opp1(y))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(j1(x), y) -> -2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ AND
↳ QDP
↳ QDP
↳ QDP
Q DP problem:
The TRS P consists of the following rules:
*12(*2(x, y), z) -> *12(y, z)
*12(j1(x), y) -> *12(x, y)
*12(11(x), y) -> *12(x, y)
*12(01(x), y) -> *12(x, y)
*12(*2(x, y), z) -> *12(x, *2(y, z))
The TRS R consists of the following rules:
01(#) -> #
+2(#, x) -> x
+2(x, #) -> x
+2(01(x), 01(y)) -> 01(+2(x, y))
+2(01(x), 11(y)) -> 11(+2(x, y))
+2(11(x), 01(y)) -> 11(+2(x, y))
+2(01(x), j1(y)) -> j1(+2(x, y))
+2(j1(x), 01(y)) -> j1(+2(x, y))
+2(11(x), 11(y)) -> j1(+2(+2(x, y), 11(#)))
+2(j1(x), j1(y)) -> 11(+2(+2(x, y), j1(#)))
+2(11(x), j1(y)) -> 01(+2(x, y))
+2(j1(x), 11(y)) -> 01(+2(x, y))
+2(+2(x, y), z) -> +2(x, +2(y, z))
opp1(#) -> #
opp1(01(x)) -> 01(opp1(x))
opp1(11(x)) -> j1(opp1(x))
opp1(j1(x)) -> 11(opp1(x))
-2(x, y) -> +2(x, opp1(y))
*2(#, x) -> #
*2(01(x), y) -> 01(*2(x, y))
*2(11(x), y) -> +2(01(*2(x, y)), y)
*2(j1(x), y) -> -2(01(*2(x, y)), y)
*2(*2(x, y), z) -> *2(x, *2(y, z))
Q is empty.
We have to consider all minimal (P,Q,R)-chains.